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Abstract: Euclidean geometry, inherited from ancient Greece, was modeled on axiomatic methods 6 
in modern science. Hilbert's “Foundations of Geometry” supplemented the lacking axioms, and 7 
seemed to have reached the stage of completion of plane geometry, but still questions remain why 8 
there is no definition of a plane nor a line. Looking back on the history of special relativity, Lorentz 9 
and Poincaré were on their way to finding a theory to prove the results of Michelson-Morley 10 
experiment. Meanwhile, Einstein published the theory of relativity based on the two principles. At 11 
a glance, all things have been done, but this is not enough. Following the Poincaré conjecture [1,2] 12 
and digging into why the relativity principle holds, we arrive at a deeper symmetry of spacetime. A 13 
paragraph of Hannyashin Sutra “空即是色  Kuu soku ze shiki” is interpreted as “emptiness 14 
contains the form of cosmos". From the viewpoint of spacetime substantivalism, empty space is a 15 
treasure trove in which to discover the hidden rules of the cosmos. Reading the book of Nature 16 
written in mathematics, we observe that fundamental symmetry is a plane with indistinguishable 17 
back and front surfaces in which the basic laws must be subject to this symmetry. 18 

Keywords: symmetry plane; symmetric plane; invariant function; inner product; Minkowski 19 
spacetime; relativity principle; arrow of time 20 

 21 

1. Introduction 22 

1.1. My basic questions from school days 23 

 For plane geometry 24 
Why does the axiom system not depart from the properties of a plane itself [3,4]? A plane is 25 

two-dimensional linear space, with back and front symmetry. It is concerned that ancient field of 26 
view of a plane that was drawing figures on the ground still continues. 27 
 For linear algebra 28 

Why is the inner product not deduced from a Euclidean plane, but defined on a vector space? A 29 
Euclidean plane belongs to nature. For mathematics to make sense, it is essential to give the meaning 30 
of the inner product not only from the form itself but also from the internal harmony within it. 31 
 For the theory of special relativity 32 

It seems that the two principles are not independent. What can be considered are (1) one is 33 
contained in the other, or (2) there is a deeper principle that applies to both parties. The nature of 34 
spacetime, especially unidirection of time and symmetry of plane should be involved in the theory. 35 

1.2. How to prove that “a Euclidean plane is inversion invariant for any line on itself” ?  36 

Proof【Put an origin on any point in a Euclidean plane. The rotation matrix Ａ and the reflection 37 

matrix Ｂ are established on a Euclidean plane as Ａ= (
cos 𝜃 sin 𝜃

−sin 𝜃 cos 𝜃
) and Ｂ = (

cos 𝜃 − sin 𝜃
− sin 𝜃 − cos 𝜃

)．38 

Note that Ｂ=Ｂ‒1 ⇔ Ｂ2 =Ｅ, Ａ=ＢＭ, Ｍ= (
1 0
0 −1

), and Ｅ= (
1 0
0 1

). In the Figure 1., let there be a 39 

coordinate axis x2-y2 by matrix Ｂ on the back side and x-y on the front side, and xA-yA by matrix Ａ 40 
on the front side of a plane. From the reflection matrix Ｂ, their relations are  41 

y2 axis : x2 = cos θ･x‒sin θ･y = 0 ⇔ y = cot θ･x = x／√3, where θ=π/3 for example,  42 
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x2 axis : y2 =‒sin θ･x‒cos θ･y = 0 ⇔ y=‒tan θ･x =‒√3x. 43 

The matrix Ｂ transforms a point p on the front side to the corresponding rear point q on the 44 
back side as q =Ｂp, and also to the reflection point q on the front side as q =Ｂp.  45 

The eigen values, eigen lines through the origin, and eigen plane of matrix Ｂ are as follows: 46 

 Eigen values are λ=±1, as traceＢ=0 and detＢ=‒1.  47 

 For λ=1 ⇔ a fixed-point equation Ｂp=p, this eigen line is named a fold line f : 48 

cos θ･x－sin θ･y = x ⇔ y=
cos 𝜃−1

sin 𝜃
･x = －tan

𝜃

2
･x =－x／√3. (1) 

 For λ=－1 ⇔ an inversion equation Ｂp=－p, this eigen line is named an isotropic line g :  49 

cos θ･x－sin θ･y =－x ⇔ y = 
cos 𝜃+1

sin 𝜃
 x = cot

𝜃

2
･x = √3x.  

 Eigen plane is made of eigen lines f and g, and it is semi-isotropic, since the line segment  (p－50 
Ｂp) is parallel to the isotropic line g, and its middle point is in the fold line f. 51 
The point p on the front side is transformed by Ｂ as p(front)→Ｂp(front)→Ｂ2p = p(back). 52 
The point p on back side is transformed by Ｂ as p(back)→Ｂp(back)→Ｂ2p = p(front). 53 

 54 

Example: θ=π/3，tan θ=√3，tan
𝜃

2
 = 1／√3 55 

Ｂ=(
cos 𝜃 − sin 𝜃

− sin 𝜃 − cos 𝜃
) = 

1

2
(

1 −√3

−√3 −1
). 56 

 57 
   front side        back side 58 

     p=(
1
0

)    ⇄  Ｂp= 
𝟏

𝟐
(

1

−√3
) 59 

      ↑↓           ↑↓  * 60 

 Ｂp= 
𝟏

𝟐
(

1

−√3
) ⇄  p=(

1
0

)=Ｂ2p 61 

 62 
      p→Ｂp   →  Ｂ2p=p 63 
      Ｂ2p=p   ←  Ｂp ←p 64 

*Note that front→front means figure transformation 65 
and front⇄back means coordinate transformation. 66 

Therefore, the point p on the front side is equivalent to the point p on the back side, so the eigen 67 
plane is symmetric for the fold line f as an axis of reflection. Since the direction of a hold line f can be 68 
in all directions as per Equation (1), then “a Euclidean plane is inversion invariant for any line on 69 
itself”.□】 70 

The inverse proposition that “If a plane is symmetric, then we have a Euclidean plane” is 71 
partially true, as given in the next section. 72 

1.3. What does the symmetry of a plane deduce? 73 

Put right-hand oblique coordinate systems on both face sides of a plane, and make them 74 
coincide with their origins. We define the 2×2 rear surface coordinate transformation matrix Ｂ as 75 
an inside out transformation, then detＢ< 0. Because it is not possible to distinguish which side of a 76 
plane is the back or the front, the symmetry plane equation is Ｂ=Ｂ‒1 ⇔ Ｂ2 =Ｅ. We obtain an 77 
oblique reflection transformation matrix Ｂ with two degrees of freedom: 78 

Ｂ= (
𝑎 −𝑏
𝑐 −𝑎

) = (
𝑎 −𝑏

𝑘𝑏 −𝑎
), where detＢ=－1, k = c/b.  

We derive the matrix Ａ=ＢＭ= (
𝑎 −𝑏
𝑐 −𝑎

) (
1 0
0 −1

) = (
𝑎 𝑏
𝑐 𝑎

) = (
𝑎 𝑏

𝑘𝑏 𝑎
), where detＡ= 1. It is 79 

known that if k=－1, then Ａ is a rotation matrix and Ｂ is a reflection matrix. If k< 0, k= 0, and k> 0 in 80 
order, then the matrix Ａ is referred to as elliptic transformation, Galilean transformation, and 81 
Lorentz transformation respectively. When we fix coefficient k, then matrices Ａ and Ｂ create an 82 
isometric transformation group (see Equation (38) and (39)). 83 
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Thus, the symmetry of a plane gives rise not only to Euclidean geometry when k=－1, but also to 84 
the principle of relativity when k ≥ 0. 85 

2. Terms, definitions, axioms, and mathematical preparations 86 

Terms: 87 
 An oblique reflection plane has a fold line and isotropic lines. A point p is transformed to a point 88 

Ｂp in the same isotropic line by an oblique reflection transformation Ｂ, and their middle point is 89 
in the fold line (see Figure 2.).  90 

Definitions:  91 

 Spacetime is a four-dimensional unified entity of space and time without considering all of the 92 
matter from the universe.  93 

 Space is continuous, infinite, homogeneous, three-dimensional, and isotropic. 94 
 Time is continuous, infinite, homogeneous, one-dimensional and unidirectional, and 95 

irreversible. 96 
 A line in spacetime is one-dimensional, and it is inversion invariant for any point on itself. 97 
 A plane in spacetime is two-dimensional, and it is inversion invariant for any axis of a fold line 98 

passing through any two points on itself. 99 
 An asymmetric plane is a plane with distinguishable back and front surfaces.  100 
 A symmetry plane or a symmetric plane is a plane with indistinguishable back and front surfaces.  101 
 A line of a coordinate axis on a plane in spacetime is one of two types, namely, a space line is 102 

isotropic, or a time line is unidirectional. 103 
 A plane in spacetime is one of two types, namely, space × space type or space × time type.  104 
 A space × space type plane is completely isotropic, since the space line is isotropic. This type of 105 

plane exists as a subspace of a three-dimensional space in an inertial system.  106 
 A space × time type plane is semi-isotropic, since the time line is of unidirectional and the space 107 

line is isotropic. This type of plane exists when we think of one-dimensional space in which all 108 
inertial systems move on one line and inertial coordinate systems with a space-axis and a 109 
time-axis coexist in one common space × time plane. Note that “spacetime” means four- 110 
dimensional space of space- time, and “space × time” means two-dimensional plane. 111 

 Invariant function: Let Ａ= (
𝑎 𝑏
𝑐 𝑑

) be a matrix, p=(
𝑥
𝑦) be a point, and f be a function of p. If f(Ａp) 112 

= f(p), then this function f(p) is called an invariant function of Ａ. 113 
Axioms: 114 
 Inertial system axiom: There are an infinite number of empty inertial coordinate systems (or 115 

inertial systems) in empty spacetime. Each has its own four-dimensional spacetime and keeps 116 
its uniform motion on a straight line. 117 

 Symmetry plane axiom: It is not possible to distinguish which side of a plane in spacetime is the 118 
back or the front. 119 

Mathematical preparations: 120 

 An invariant line f(p) of a 2×2 matrix Ｂ= (
𝑎 𝑏
𝑐 𝑑

) is the solution to a first order invariant function 121 

equation in the form of f(Ｂp) ≡ f(p) = ux＋vy 122 
    ⇔ u(ax＋by)＋v(cx＋dy) = ux＋vy ⇔ [(a－1)u＋cv] x＋[bu＋(d－1)v] y = 0 123 
    ⇔ x,y are arbitrary, and in order to have a non-self-explanatory solution,  124 

the determinant = (a－1)(d－1)－bc = 0. (2) 

When the matrix Ｂ has an eigen value λ=1, we obtain an invariant line f(p) by substituting u=c, 125 
v=－(a－1) on f(p) = ux＋vy. Thus, an invariant line is  126 

f(Ｂp ) ≡ f(p ) = cx－(a－1)y. (3) 

 Quadratic invariant function φ(p) of a 2×2 matrix Ａ= (
𝑎 𝑏
𝑐 𝑑

) is the solution of a second order 127 

invariant function equation in the form of 128 
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φ(Ａp) ≡ φ(p) = ux2＋vy2＋wxy ⇔  

φ(Ａp) =φ(ax＋by，cx＋dy) = u(ax＋by)2＋v(cx＋dy)2＋w(ax＋by)(cx+dy) = ux2＋vy2＋wxy 

⇔ [(a2－1)u＋c2v＋acw] x2＋[b2u＋(d2－1)v＋bdw] y2＋[2ab＋2cdv＋(ad＋bc－1)w] xy = 0. 

(4) 

Since x2, y2, and xy are arbitrary, each coefficient must be equal to 0, and we obtain a 129 
simultaneous equation of u, v, and w,  130 

 (
𝑎2－1 𝑐2 𝑎𝑐

𝑏2 𝑑2 − 1 𝑏𝑑
2𝑎𝑏 2𝑐𝑑 𝑎𝑑 + 𝑏𝑐 − 1

) (
𝑢
𝑣
𝑤

) = (
0
0
0

). (5) 

In order to have a non-self-explanatory solution, the determinant of the matrix in Equation (5) 131 
must be equal to 0. Thus, 132 

the determinant = (ad－bc－1)[(ad－bc＋1)2－(a＋d)2] = 0 

⇔ ad－bc = 1 or ad－bc =－1 and a＋d = 0. 
(6) 

Here, by using the solution of u=－c, v=b, w=a－d, we obtain an identity:  133 

φ(Ａp) ≡ detＡ･φ(p), where Ａ is a matrix Ａ= (
𝑎 𝑏
𝑐 𝑑

), p is a point p=(
𝑥
𝑦),  

and φ(p) is a quadratic function given by φ(p) =－cx2＋by2＋(a－d)xy. 

(7) 

 

(1) From Equations (6) and (7), if detＡ=1, then 134 

φ(Ａp) =φ(p) =－cx2＋by2＋(a－d)xy. (8) 

In this case, φ(p) is the second order invariant function of the matrix Ａ. φ(p) is allowed to be 135 
multiplied by a scale factor, such that  136 

if Φ(p) = rφ(p), then Φ(Ａp) = rφ(Ａp) = r detＡφ(p) = rφ(p) = Φ(p). (9) 

(2) Moreover, if detＡ≠1, then φ(p) is called a relative invariant function of matrix Ａ. 137 
(3) We also obtain another invariant function from Equation (6). If detＡ=－1 and traceＡ=a＋d=0 ⇔ 138 
if eigen values of Ａ are λ=±1, then change the notation of matrix Ａ into Ｂ for convenience, and 139 

the invariant function has the same part of Equation (8) with the cross product xy eliminated, such 140 
that 141 

when Ｂ= (
−𝑎 −𝑏
𝑐 𝑎

), and detＢ =－1, then φ(Ｂp) =φ(p) =－cx2＋by2. (10) 

 A special linear transformation matrixＳ has commutative coefficients k,h and is disassembled as 142 

Ｓ=(
𝑎 𝑏
𝑐 𝑑

) = (
𝑚 + ℎ𝑏 𝑏

𝑘𝑏 𝑚 − ℎ𝑏
), 

where detＳ = m2－Δb2 = 1, Δ= h2＋k, m = (a＋d)/2, k = c/b, 2h = (a－d)/b, and b ≠ 0. 

(11) 

When Ｓ1=(
𝑚1 + ℎ𝑏1 𝑏1

𝑘𝑏1 𝑚1 − ℎ𝑏1
), andＳ2= (

𝑚2 + ℎ𝑏2 𝑏2

𝑘𝑏2 𝑚2 − ℎ𝑏2
), then matrices Ｓ1,Ｓ2, 

 and their products Ｓ1Ｓ2 have common coefficients k, h, and Ｓ1Ｓ2 =Ｓ2Ｓ1 holds. 

(12) 

From Equations (8) and (9), we have that matrix Ｓ has a normalized invariant function, 143 

φ(Ｓp) =φ(p) =－kx2＋y2＋2hxy. (13) 

The matrix Ｓ and the invariant function φ(p) can be classified into three types based on the 144 
sign of the discriminant Δ=h2＋k. 145 
If Δ< 0, then they are of an elliptic type. 146 
If Δ> 0, then they are of a hyperbolic type. 147 
If Δ= 0, then they are of a linear type. 148 

Thus, we define the polar form of 2×2 special matrix Ｓ= (
𝑎 𝑏
𝑐 𝑑

) = (
𝑚 + ℎ𝑏 𝑏

𝑘𝑏 𝑚 − ℎ𝑏
), where  149 
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detＳ=m2－Δb2=1, using argument θ, and commutative coefficient k, h as follows: 150 

For Δ< 0, Ｓ=Ｓ(θ,k,h) = (
cosθ +

ℎ

√−𝛥
sinθ

1

√−𝛥
sinθ

𝑘

√−𝛥
sinθ cosθ −

ℎ

√−𝛥
sinθ

), elliptic type. (14) 

For Δ> 0, Ｓ=Ｓ(θ,k,h) = (
coshθ +

ℎ

√𝛥
sinhθ

1

√𝛥
sinhθ

𝑘

√𝛥
sinhθ coshθ −

ℎ

√𝛥
sinhθ

), hyperbolic type. (15) 

For Δ= 0, Ｓ=Ｓ(b,h) = (
𝑚 + ℎ𝑏 𝑏

−ℎ²𝑏 𝑚 − ℎ𝑏
), where m =±1, linear type. (16) 

Any 2×2 non-diagonal regular matrix Ｆ is represented by the polar form of  151 

Ｆ= (detＦ)1/2Ｓ(θ,k,h) or Ｆ= (detＦ)1/2Ｓ(b,h)． (17) 

However, when detＦ< 0, the matrix Ｆ represents an inside out transformation, and then the orbit 152 
of the invariant function as shown Equation (13) branches off to a conjugate curve of φ(p), and 153 
complex number of argument θ appears. 154 

We obtain the addition theorem of argument θ or b from Equations (14)－(16) as follows: 155 

Ｓ(θ1,k,h)Ｓ(θ2,k,h) =Ｓ(θ1＋θ2,k,h), Ｓ(θ,k,h)n =Ｓ(nθ,k,h), Ｓ(θ,k,h)－1 =Ｓ(－θ,k,h), 

Ｓ(b1,h)Ｓ(b2,h) =Ｓ(b1＋b2,h), Ｓ(b,h)n =Ｓ(nb,h), Ｓ(b,h)－1 =Ｓ(－b,h).  
(18) 

 The norm ‖p‖ of a vector p is defined by the invariant functionφ(p) such that  156 

‖p‖2=φ(p) =－kx2＋y2＋2hxy, and the norm ‖p‖=φ(p)1/2. (19) 

 The inner product of vector p and q is defined by the invariant function φ(p) as follows: 157 

p = (x1,y1), q = (x2,y2) =Ｆp = (detＦ)1/2Ｓ(θ,k,h) p, (20) 

‖p‖2 =φ(p) =－kx12＋y12＋2hx1y1, ‖q‖2 =φ(q) =－kx22＋y22＋2hx2y2, 

‖p＋q‖2 =φ(p＋q) =－k(x1＋x2)2＋(y1＋y2)2＋2h(x1＋x2)(y1＋y2), 

=‖p‖2＋‖q‖2＋2(－kx1x2＋y1y2＋h(x1y2＋x2y1))． 

(21) 

Thus, we induce the inner product and the cosine theorems from Equations (14), (15), and (20), 158 

(p,q) = p・q =－kx1x2＋y1y2＋h(x1y2＋x2y1) = p・(detＦ)1/2Ｓ(θ,k,h)p 

= 
1

2
(‖p＋q‖2－‖p‖2－‖q‖2)= 

1

2
(φ(p＋q)－φ(p)－φ(q)) 

= (detＦ)1/2φ(p)cos θ = ‖p‖‖q‖cos θ, when Ｓ is an elliptic type,  

= (detＦ)1/2φ(p)cosh θ = ‖p‖‖q‖cosh θ, when Ｓ is a hyperbolic type. 

(22) 

 Furthermore, when d=a ⇔ h=0 on a special linear transformationＳ, we define a commutative 159 
special isodiagonal transformation Ａ and invariant function φ(p) given by 160 

Ａ= (
𝑎 𝑏
𝑐 𝑎

) = (
𝑎 𝑏

𝑘𝑏 𝑎
), detＡ= a2－kb2 = 1, k = c/b, and  

φ(Ａp) =φ(p) =－kx2＋y2, where k is a commutative coefficient. 
(23) 

In this case, we define the norm ‖p‖ and the inner product (p,q) as follows: 161 

‖p‖2 =φ(p) =－kx2＋y2, ‖p‖=φ(p)1/2, (24) 

(p,q) = p・q =－kx1x2＋y1y2. (25) 
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If (p,q) = 0 ⇔ (y1/x1)(y2/x2) = k, then the vectors of p and q are defined as orthogonal. (26) 

We obtain the polar form of Ａ from Equations (14)－(16)． 162 

When k< 0, then Ａ= (
𝑎 𝑏

𝑘𝑏 𝑎
) = (

cos 𝜃 sin 𝜃 /√−𝑘

−√−𝑘 sin 𝜃 cos 𝜃
), θ is an elliptic angle. (27) 

When k=－1, then this type of matrix Ａ is called a rotation transformation. 163 

When k> 0, then Ａ= (
𝑎 𝑏

𝑘𝑏 𝑎
) = (

cosh 𝜃 sinh 𝜃 /√𝑘

√𝑘 sinh 𝜃 cosh 𝜃
), θ is a hyperbolic angle. (28) 

This type of matrix Ａ is called a Lorentz transformation. 164 

When k = 0, then Ａ= (
𝑎 𝑏

𝑘𝑏 𝑎
) = (

𝑎 𝑏
0 𝑎

), a = ±1. (29) 

This type of matrix Ａ is called a Galilean transformation. 165 

3. Geometric structure of a line 166 

Put two number lines 1 and 2 on one line, and make them coincide with their origins. The 167 
relation between their x-coordinates of x1 and x2 is x2=rx1 ⇔ x1=r－1x2, where r is a proportional 168 
constant. For two equivalent number lines, we must have 169 

r = r－1 ⇔ r2 = 1 ⇔ r = ±1.  

 When r=－1, then the two number lines are inversion of each other, and this type of line is 170 
isotropic. A space line fits into this category. 171 

 When r=1, then the two number lines coincide with each other, and this type of line is one way. 172 
A time line fits into this category. 173 

 When r≠±1, then the two number lines are similar. 174 

4. Geometric structure of a plane 175 

Theorem: A symmetry plane is a linear space. 176 
Brief proof【 From the definition of the inversion invariance of a line, a line is a linear space. Also 177 
from the definition of a plane, we obtain at least two lines that exist in a plane. Then, from the 178 
inversion invariance of a plane, we observe that these lines make a plane linear. □】 179 

Put right-hand oblique coordinate systems on both face sides of a plane, and make them 180 
coincide with their origins. We define the 2×2 rear surface coordinate transformation matrix Ｂ as 181 
an inside out transformation, then detＢ< 0.  182 

If Ｂ≠Ｂ－1, then this plane is not symmetric, while if Ｂ=Ｂ－1, then this plane is symmetric. 183 
Therefore, the symmetry plane equation is 184 

Ｂ=Ｂ－1  ⇔ Ｂ2 =Ｅ, where detＢ< 0. (30) 

We obtain an oblique reflection transformation matrix Ｂ with two degrees of freedom: 185 

Ｂ= ±(
−𝑎 −𝑏
𝑐 𝑎

)= ±(
−𝑎 −𝑏
𝑘𝑏 𝑎

), detＢ=－a2＋bc =－1, k=c/b, eigen values λ= ±1. (31) 

The matrix Ｂ has the following properties (we shall treat the negative solution－Ｂ later). 186 

 As the matrix Ｂ has an eigen value of 1, then it has an invariant line f(p) like as Equation (3). 187 

f(Ｂp) ≡ f(p) = cx＋(a＋1)y. (32) 

 For λ=1 ⇔ a fixed-point equation Ｂp=p, this eigen line is called a fold line f: 188 

cx＋(a－1)y = 0. (33) 

 For λ=－1 ⇔ an inversion equation Ｂp=－p, this eigen line is called an isotropic line g: 189 

cx＋(a＋1)y = 0. (34) 
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This line g is isotropic regarding its origin, and is parallel to an invariant line f(p) given as per 190 
Equation (32).  191 

When a point p is in an invariant line f(p), and the point r is the intersection point of a fold line f 192 
and an invariant line f(p), then in the fold line f, Ｂr=r, and in the invariant line, f(Ｂp)=f(p)=f(r). 193 
Obtained by translating the vector (p－r) onto the isotropic line g, 194 

Ｂ(p－r) =－(p－r) ⇔ Ｂp－r =－p＋r ⇔Ｂp＋p = 2r. (35) 

Since the fixed-point r is the middle point of the 195 
point p and Ｂp, and each invariant line f(p) is 196 
parallel to the isotropic line g, then the invariant 197 
lines f(p) are isotropic. The inner product of f and g 198 

is 
−𝑐

𝑎−1
 

−𝑐

𝑎+1
 = 

𝑐2

𝑎2−1
 =

𝑐2

𝑏𝑐
 = 

𝑐

𝑏
 = k. From Equation(26), 199 

these two lines of f and g are orthogonal, but 200 
commonly seem not perpendicular. The eigen 201 
plane with eigen lines of f and g is called an oblique 202 
reflection plane, and it is semi-isotropic. The point 203 
Ｂp on the back side is hidden behind the point p 204 
on the front side.  205 

Figure 2. shows the case of Ｂ= 
1

3
(

−5 4
−4 5

), k=1. 206 

 Meanwhile, when Ｂ≠Ｂ－１ , then we have 207 
another geometry on an asymmetric plane. 208 

 We derive a special isodiagonal transformation 209 
matrix Ａ  from the oblique reflection 210 
transformation matrix Ｂ  and the reflection 211 
matrix Ｍ such that 212 

Ａ=ＭＢ = Ｍ (
−𝑎 −𝑏
𝑐 𝑎

) = (
𝑎 𝑏
𝑐 𝑎

) = (
𝑎 𝑏

𝑘𝑏 𝑎
)，where Ｍ = (

−1 0
0 1

), detＡ= 1, k = c/b. (36) 

The matrix Ａ is a coordinate transformation between the right-hand systems in which the left-hand 213 
x2-y2 system on the back side is reflected in the right-hand xA-yA system on the front side by Ｍ. Note 214 
that Ａ=±ＢＭ or Ａ=±ＭＢ is equivalent as to left to right-hand system inversion. 215 

Since Ｂ=ＭＡ, φ(Ｍp) =φ(p), and φ(Ａp) =φ(p) =－kx2＋y2 as per Equation (23), then the 216 
matrix Ｂ has the same invariant function φ(p) of Ａ which is already implied in Equation (10), 217 

φ(Ｂp) =φ(Ｍ(Ａp)) =φ(Ａp) =φ(p) =－kx2＋y2, k = c/b. (37) 

When the commutative coefficient k is fixed, then we observe that any combination of matrices 218 
Ｂ and Ａ has the common invariant function φ(p), and their joint operation is closed in the orbit of 219 
φ(p) as 220 

φ(ＢＡ2…Ｂ－1Ａ－1p) =φ(Ａ2…Ｂ－1Ａ－1p) =φ(Ａ…Ｂ－1Ａ－1p) =φ(Ｂ－1Ａ－1p) 

=φ(ＢＡ－1p) =φ(Ａ－1p) =φ(Ａp) =φ(p) =φ(Ｅp) =－kx2＋y2, where Ｂ－1 =Ｂ. 
(38) 

Thus, we conclude that any combination of Ｂ and Ａ creates an isometric transformation group on 221 
the orbit of invariant functionφ(p) with the metric 222 

‖Ｂp‖2=‖Ａp‖2 =‖p‖2 =φ(Ｂp) =φ(Ａp) =φ(p) =－kx2＋y2. (39) 

The oblique reflection matrix Ｂ  transforms a point p on the front side to the 

corresponding rear point q on the back side as 
 

q1=Ｂp1, q2 =Ｂp2. (40) 

However, on the front side, a figure transformation matrix Ｘ transforms a point from p1 to p2. as 223 

p2 =Ｘp1, detＸ> 0. (41) 
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Also on the back side, Ｙ transforms a point from q1 to q2 as 224 

q2=Ｙq1, detＹ> 0. (42) 

Consequently, from these four equations, we obtain the relation,  225 

q2 =Ｙq1=ＹＢp1 =Ｂp2 =ＢＸp1. (43) 

Since the point p1 is arbitrary and Ｂ=Ｂ－1, then we obtain 226 

ＹＢ = ＢＸ ⇔ Ｙ = ＢＸＢ ⇔ ＢＹ = ＸＢ,  

where detＹ = detＸ> 0, traceＹ = traceＸ. 
(44) 

Therefore, the matrix Ｙ is similar to Ｘ, and they are of the same type of matrix. Then, substituting 227 
Ｂ=Ｍ (Ｍ is one of the solutions of Ｂ=Ｂ－1) and Ｂ=ＭＡ into Equation (44), 228 

ＹＭ = ＭＸ  and  ＹＭＡ = ＭＡＸ = ＭＸＡ. (45) 

Comparing the second and third sides, ＡＸ=ＸＡ. In the same way ＡＹ=ＹＡ. 229 
However, since the coordinate transformation matrix Ａ  and the figure transformation 230 

matrices Ｘ  and Ｙ  are commutative, then the matrices Ｘ  andＹ  have a common relative 231 
invariant function φ(p) from Equation (7) and (23) as   232 

φ(Ｘp) = detＸφ(p) =φ(Ｙp) = detＹφ(p), 

where φ(Ａp) =φ(p) =－kx2＋y2. 
(46) 

Thus we conclude that any combination of the matrices Ａ, Ｘ, andＹ creates a commutative 233 
transformation group. Furthermore, any combination of the matrices Ｂ, Ａ, Ｘ, and Ｙ creates a 234 
transformation group based on the orbit of invariant function φ(p) on both sides of a plane. This 235 
super group geometry involves Euclidean geometry and Minkowski plane geometry. An example 236 
is shown in Figure A1. of Appendix A. 237 

On the other hand, based on the sign of k, we obtain the existing direction of fold and isotropic 238 
lines that vary on the coordinate system. Some cases are presented as follows: 239 
(1) If k< 0, then matrix Ａ and the invariant function φ(p)=－kx2＋y2 are an elliptic type, and from 240 

Equation (27), we can express the matrix Ｂ=ＭＡ given by 241 

Ｍ = (
−1 0
0 1

), Ｂ =ＭＡ= (
−𝑎 −𝑏
𝑐 𝑎

) = (
− cos 𝜃 − sin 𝜃 /√−𝑘

−√−𝑘 sin 𝜃 cos 𝜃
), detＢ =－1. (47) 

From Equation (33), we have the fold line f： 242 

y =
−𝑐

𝑎−1
𝑥 = √−𝑘

sin𝜃

cos𝜃−1
 𝑥 = √−𝑘cot

𝜃

2
･ 𝑥 =ux. (48) 

From Equation (34), we have the isotropic line g： 243 

𝑦 =
−𝑐

𝑎+1
𝑥 = √−𝑘

sin𝜃

cos𝜃+1
 𝑥 = √−𝑘tan

𝜃

2
･𝑥＝vx. (49) 

The existing directions of lines f and g are 244 

－∞＜u＜∞, －∞＜v＜∞. (50) 

We observe that an oblique reflection plane made of a fold line f and an isotropic line g exists in 245 
all directions centered around the origin. Similar is the case of a negative solution of the matrix－Ｂ. 246 
Therefore, we conclude that this symmetry plane made of oblique reflection planes is completely 247 
isotropic. This type of plane which has the oblique reflection matrix Ｂ with k< 0 fits in the space × 248 
space type plane and forms an elliptic type plane geometry. When k=－1, then Euclidean geometry is 249 
given as shown in section 5.3. 250 
(2) If k> 0, then matrixＡ and the invariant function φ(p)=－kx2＋y2 is a hyperbolic type, and from 251 

Equation (28), we can express the matrix Ｂ=ＭＡ given by 252 
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Ｂ= (
−𝑎 −𝑏
𝑐 𝑎

) = (
− cosh 𝜃 − sinh 𝜃 /√𝑘

√𝑘 sinh 𝜃 cosh 𝜃
), detＢ=－1, a=cosh θ, c= √𝑘sinh θ. (51) 

From Equation (33), we have the fold line f： 253 

y =
−𝑐

𝑎−1
𝑥 = －√𝑘

sinh𝜃

cosh𝜃−1
 𝑥 = －√𝑘coth

𝜃

2
･ 𝑥＝ux. (52) 

From Equation (34), we have the isotropic line g： 254 

𝑦 =
−𝑐

𝑎+1
𝑥 = －√𝑘

sinh𝜃

cosh𝜃+1
 𝑥 = － √𝑘tanh

𝜃

2
･𝑥＝vx. (53) 

The asymptote line is 255 

y =±√𝑘x. ( for θ→±∞) (54) 

The existing directions of the lines f are  256 

－∞＜u＜－√𝑘 and √𝑘＜u＜∞, upper and lower quadrant. (55) 

The existing directions of the lines g are  257 

－√𝑘＜u＜√𝑘, left and right quadrant. 

The x2-y2 axes are 

(56) 

y2 axis: x2=－ax－by=0 ⇔ y=－√𝑘coth θ･x, x2 axis: y2=cx＋ay=0 ⇔ y=－√𝑘tanh θ･x (57) 

The direction of the fold line f exists in the upper and lower quadrant regions, and the direction 258 
of the isotropic line g exists in the left and right quadrant regions on the coordinate system. The 259 
directions of axes of y and y2 are the same upper quadrant regions, but the directions of axes of x and 260 
x2 are the inverse. The inverse relation of g and f is the negative solution of the matrix－Ｂ. Therefore, 261 
we conclude that this symmetry plane made of oblique reflection planes is semi-isotropic, as the 262 
time axes are f, y, y2 and the space axes are g, x, x2. This type of plane which has the oblique 263 
reflection matrix Ｂ with k> 0 fits in the space × time type plane, and forms a hyperbolic type plane 264 
geometry. However, when k=1/c2 and y=t, we call this hyperbolic type plane geometry a Minkowski 265 
spacetime geometry. The constant c represents the speed of light. 266 

5. Expected conclusions 267 

5.1. Conceptual answer to the principle of relativity 268 

               ←v                       S2 269 

                S1                      v→ 270 
We think the two inertial systems S1 and S2 271 

move on one line, going away from each other at the 272 
speed of v m/sec. In the Figure 3., the space-time axes 273 
of inertial coordinate systems S1 and S2 are x1-t1 on 274 
the front side, and x2-t2 on the back side of a 275 
Minkowski plane. Make them coincide with their 276 
origins. From Equation (28) and substituting y=t, we 277 
have Lorentz transformation xL=ax1+bt1, tL=kbx1+at1. 278 
The xL-tL represents the Lorentz coordinate axis. From 279 
the first equation, a is a unitless constant, and b is a velocity constant. As the motion of S2 is 280 
represented by x1=vt1 on the front side, then tL axis is xL=0 ⇔ x1=vt1 and v=－b/a is deduced. From 281 
the second equation, k represents reciprocal of the velocity squared in which we put k=1/c2>0 by 282 
convention, and c is a velocity constant. Since detＬ=1, then we obtain a= 1／√1－𝑣2/𝑐2=γ. Thus, the 283 
Lorentz transformation and its oblique reflection transformation Ｂ are defined as follows: 284 

 tL  t2 

x2 

 

t1 

x1 

Ｂp 

 

isotropic line g 

Figure 3. Relativity principle  

fo
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Ｂp 
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Ｌ= 𝛾 (
1 −𝑣

−𝑣/𝑐2 1
) =ＭＢ, detＬ= 1, Ｍ= (

−1 0
0 1

)=ＬＢ, γ= 1／√1－𝑣2/𝑐2, 

Ｂ= 𝛾 (
−1 𝑣

−𝑣/𝑐2 1
) =ＭＬ=Ｂ－1, detＢ=－1, p=(

0
1

), p=(
0
1

),Ｂp=(
𝛾𝑣
𝛾 ), Ｂ(

0
1/𝛾

)=(
𝑣
1

), Ｌ(
0
1

) =  (
−𝛾𝑣

𝛾 ), 

t2-axis: x2=γ(－x1＋vt1)=0, x2-axis: t2=γ(－vx1/𝑐2＋t1)=0. 

φ(ＢＬp) =φ(Ｌp) =φ(L*p) =φ(Ｂp) =φ(p) =φ(
𝑥1

𝑡1
) =φ(

𝑥2

𝑡2
) =φ(

𝑥𝐿

𝑡𝐿
) =－kx2＋t2, k=1/c2>0, 

S1→S2: x1=vt1, S2→S1: x2=vt2, xL=－vtL, x1-axis∥Ｂp―L*p, isotropic line g∥p―Ｂp. 

*Note that Ｂp or L*p means figure transformation and Ｂp or Ｌp means coordinate transformation. 

The fold line f and the isotropic line g of matrix Ｂ are drawn perpendicular. It is proposed that 285 

the matrix Ｂ is the same case of figure 2. as Ｂ= 
1

3
(

−5 4
−4 5

) for example, and c=1, v=4c/5, k=1, and θ =286 

－1.0986 which is hyperbolic angle of axis y and y2 as per Equation (57). The physical symmetry is 287 
x1=vt1 and x2=vt2, which is supported by the tilt between x2-t2 and x1-t1 coordinate. If the point p or 288 
axis xL-yL exists on the front side, then the point Ｂp or axis x2-y2 is hidden on the back side. Because 289 
the appearance from inertial system S1 to S2 is the same as from S2 to S1, then the view from the 290 
front side is the same as the view from the back side. Any point p on the front side is equivalent to 291 
point p on the back side such that p (front)→Ｂp (front)→Ｂ2p=p (back), and vice versa. In the same 292 
way, the transformation p→L*p on the front side is equivalent to the transformation p→L*p on the 293 
back side. We see time dilation (1→γ sec) and length contraction (v→v/γ m). Both differences occur 294 
by the projection between the axis t1 and t2 or x1 and x2. Thus, the back and front worlds are 295 
completely equivalent in terms of the symmetry of a space × time plane. This means the relativity 296 

principle in which any basic law of nature with space and time vectors (
𝑥
𝑡

) must be oblique 297 

reflection Ｂ invariant, and also Lorentz transformation invariant, because Ｌ=ＭＢ and basic laws 298 
have x inversion invariance. The two principles are not necessary, but universal limiting velocity 299 

c=1/√𝑘 is implied on Equation (54), and discussed in my website in section §5.1 in Japanese [5].  300 

5.2. Answer to the arrow of time problem 301 

Why does the physical phenomenon only proceed in one fixed direction of time in spite of the 302 
fact that fundamental law of physics has inversion symmetry with respect to time? This is the "arrow 303 
of time" problem which has long been unresolved in physics. Physical phenomena occur in linear 304 
spacetime in which unit scale intervals are regularly arranged, but its ±direction is not determined. 305 
Although time progresses from the past to the future, the direction of time may be positive or 306 
negative. Similarly the direction of the eastward straight line can be positive or negative.  307 

To solve this problem, we have to think Minkowski plane from both the back and the front sides, 308 
which represents two inertial systems of the same speed. When observing the pendulum motion, if 309 
time progresses in the positive direction on the front side and in the negative direction on the back 310 
side, then it can be distinguished which side of a plane you and I are on, but this is not the case. Both 311 
times go in the negative or in the positive direction according to the future direction. Nature is 312 
elaborate so that it cannot be distinguished which side of a plane is the front and which is the back. 313 
The symmetry of a space × time plane in spacetime is the heart of the arrow of time problem. 314 

5.3. An example of Euclidean plane 315 

When k=－1, then we obtain that the invariant function is a circle as φ(Ａp) =φ(p) = x2＋y2, and 316 
this is similar to the case of Euclidean geometry, since the coefficients of x and y are equivalent. 317 
Meanwhile, we determine that Ａ  is a rotation transformation, and Ｂ  is a reflection 318 
transformation. In this case, the relation of a fold line f and an isotropic line g is perpendicular. 319 
However, from Equation (47), when rotation angle is θ=－π/3 for example, then 320 

Ｂ= 
1

2
(

1 √3

√3 −1
), Ａ=ＢＭ=Ｂ (

1 0
0 −1

)  =  (
𝑎 𝑏
𝑐 𝑎

) = (
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
)  =  

1

2
(

1 −√3

√3 1
),  (57) 
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where c =－b =－sin θ = √ 3/2, a = cos θ = 1/2. 

The fold line f and the isotropic line g are  321 
 322 

f : y= － tan
𝜃

2
･ 𝑥 = tan

π

6
･ 𝑥 =

𝑥

√3
,   g : 𝑦 = cot

𝜃

2
･𝑥 = −cot

π

6
･𝑥 = −√3𝑥. (58) 

The x2-axis and y2-axis on the back surface are  323 

x2-axis : y=
𝑐

𝑎
𝑥 = −tan θ･𝑥=tan

π

3
･𝑥 = √3𝑥,   y2-axis：y = －

𝑥

√3
. (59) 

Considering the front side, the coordinate transformation Ａ has two coordinate axes, namely, 324 

xA-axis : y = −√3𝑥,  and yA-axis : y = x／√3. (60) 

When Ｘ is a figure transformation matrix on the front side, consider any point p is 325 
transformed such that the combinations of the matrices Ｂ, Ａ, and Ｘ make a closed circuit. For Ｘ326 
=(detＸ)1/2Ｓ, detＳ=1, the invariant function is φ(Ａp)=φ(Ｂp)=φ(Ｓp)=φ(p) =x2+y2. 327 

In Figure 4., 0<detＸ<1 is proposed. On the back side, the point Ｂp is hidden behind p on the 328 
front side, and similarly, p is hidden behind Ｂp. The two points of p and p have the same coordinate 329 
values, but their coordinate systems are different, x-y axis on the front side, and x2-y2 axis on the back 330 
side. We regard a coordinate transformation matrix Ａ as a figure transformation matrix Ａ－1, in 331 
order to easily understand the results of the transformation of point p to make a closed circuit. In 332 
Figure 4., matrix Ａ rorates point p to Ａp by θ=π/3. 333 
 p(front surface)→Ａp(front)→ＢＡp(back)→ＡＢＡp=Ｂp(back)→ＢＡＢＡp=p(front) 334 
 p(front surface)→Ａp(front)→ＢＡp(front)→ＡＢＡp=Ｂp(front)→ＢＡＢＡp=p(front) 335 
Two closed circuits are equivalent to each other. Note that each transformation goes between 336 
coordinate systems, either front and front or front and back. Similarly Ｓ and Ｘ make a closed 337 
circuit. 338 
 p(front)→Ｓp(front)→ＢＳp(back)→ＳＢＳp=Ｂp(back)→ＢＳＢＳp=p(front) 339 
 p(front)→Ｘp= (detＸ)1/2Ｓp(front)→ＢＸp(front)→ＸＢＸ=Ｂp(front)→ＢＸＢＸp＝p(front) 340 
 The solid line (p→Ａp and p→Ｘp) on the front side is an equivalent transformation to the 341 

broken line ( p→Ａp and p→Ｘp) on the back side. 342 
 343 
・θ=－∠xOx2=∠xOxA 344 
    =－∠pOＡp=－π/3  345 
・y-axis ∥ p―ＢＡp 346 
line g ∥ p―Ｂp∥Ａp―ＢＡp 347 
・x2-y2 is reflected to  348 

xA-yA in x-axis by  349 

matrix Ｍ  350 

・Invariant line 351 

f(Ｂp)=f(p)=f(r)=(√3𝑥＋y)/2 352 
  Ｂp＋p = 2r  353 
・Invariant function 354 

φ(p)=φ(Ａp)=φ(ＢＡp) 355 
    =φ(Ｂp) =φ(ＢＳp) 356 
    =φ(Ｓp)   357 
    =φ(Ａp)=φ(ＢＡp)  358 
    =φ(Ｂp)=φ(p)  359 
    =x2＋y2 360 
 361 

We also observe that the fold line f, the isotropic line g, the invariant lines f(p), and the invariant 362 
function φ(p)=x2＋y2, have the same shape from each side of the coordinate system. Both sides of the 363 
plane are symmetric when compared by viewing the surface from each back and front side. □ 364 
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Appendix A Nine-point circle theorem on symmetry planes 368 

Nine‒point circle on both Minkowski plane and Euclidean plane hold the same logic.  369 

  Point O is the center of circumscribed circle on △ABC. 370 
  Point G is the center of gravity of △ABC. 371 
  Point H is the crossing point of perpendicular lines of AL,BM,CN. 372 
  Point K is the middle point of O and H, and the center of 9-point circle. 373 
  Line OGKH is the Euler line. 374 

 375 

Figure A1. Symmetry plane geometry is constructed and deduced uniformly on both the Euclidean 376 
plane and Minkowski plane, which forms the geometry of a super group. 377 

References 378 

1. Henri Poincaré,”Electricité et optique. Lalumiére et les théories élecrtodynamiques. Leçon 379 

professée a la Sorbonne en 1889”,Paris,1901; A well-developed theory should prove this [relativity] 380 
principle all at once, ･･･ 381 

2. Henri Poincaré,“La Valuer de la Science”,1905 Chap3.1 Concept of relative space; It is not 382 

possible to distinguish when one world changes the coordinate axis or the scale of length into another 383 
world, … 384 

Poincaré was pursuing a geometrical theory to prove the relativity principle.  385 
3. Tsuruichi Hayashi,“初等幾何学の体裁 Form of Elementary Geometry”, 哲学 Phylosophy 296 号, 1911 386 
 → http://fomalhautpsa.sakura.ne.jp/Science/Other/kikagaku-teisai.pdf (accessed 17 July 2020) 387 
4. Jun Tosaka,“幾何学と空間 Geometry and Space“, 思想 Thought 57号, 1926  388 
 → https://www.aozora.gr.jp/cards/000281/files/43263_35546.html (accessed 17 July 2020). 389 
5. Hiroaki Fujimori “表裏対称平面と相対性 Symmetry Plane and Relativity” 390 

http://spatim.sakura.ne.jp/5syo.pdf 391 

 392 

A 

D L 

H 

O 

G K 

P 

Q R 

Euclidean plane 

circumscribed circle 

9-point circle DEFLMNPQR 

S 
N 

F E 

M 

C B 

 A 

Q 

B 

C 

S 

O 

D 

E 
F 

G 

K 

P 

N 

L 

(M) 

R 
H 

9-point circle FPE 

circumscribed circle 

Minkowski plane 

x 

y 

9-point circle NQLDRM 

http://fomalhautpsa.sakura.ne.jp/Science/Other/kikagaku-teisai.pdf
https://www.aozora.gr.jp/cards/000281/files/43263_35546.html
http://spatim.sakura.ne.jp/5syo.pdf

