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Abstract: Looking back on the history of the special relativity, Lorentz and Poincaré were 

on their way to giving a mathematical proof to the result of Michelson-Morley 

experiment. Meanwhile Einstein published the theory of relativity based on the principle 

of relativity and the constancy of the speed of light [1]. The problem left by Poincarè in his 

book “Electricitè et optique”[2] was that a well-developed theory should be able to prove 

this [relativity] principle very strictly and all at once. 

 By the way what do you do when you prove that Euclidean geometry holds completely 

the same on both the front and back symmetric plane? Here is the answer to this problem. 

By establishing a mathematical derivation of the special relativity principle, my paper 

gives a positive answer to this problem. 

1. Preliminaries 

1.1 Terms  

▪Spacetime is a four-dimensional unified entity of space and time without considering all 

of the matter from the universe. The 4-D spacetime is also known as Minkowski space. 

▪A plane in spacetime is one of two types, namely, space × space type or space × time type. 

A space × space type plane is completely isotropic, since the space line is isotropic. 

A space × time type plane is semi-isotropic, since the time line is of unidirectional and the 

space line is isotropic. This plane is also known as Minkowski plane. 

▪Symmetry plane is a plane with indistinguishable back and front surfaces. 

 

1.2 Relativity principle  

Extended Curie’s principle 

 Curie’s principle is that in linear physical phenomena, the symmetries of the causes are to 

be found in the effects. We have extended this principle that in linear space, the symmetry 

of space is to be derived from the symmetries of subspaces, so is the spacetime 

transformation. This means that both basic symmetries of isotropy of space and 

unidirectional of time should be used in order to derive the spacetime transformation. 

 From this viewpoint, when we review the methodology of the special relativity, the 

basic symmetry of unidirectional of time which is two different time lines have the same 

directions of time is not used explicitly in any process on deriving Lorentz transformation, 

while another basic symmetry of isotropy of space is explicitly used. This means that 

unidirectional of time is hidden behind the postulates. When we think that the principle 

of the constancy of the speed of light depends on both the principle of relativity and the 

Maxwell’s law of the speed of light, the remaining independent principle of relativity 

must be a sufficient but not necessary condition. This might be what Poincaré minded.  

 

Definition of the relativity principle 

 Let Ａ=(
𝑎 𝑏
𝑐 𝑑

) be a linear transformation, f(p) and g(q) be functions, p=(
𝑥
𝑦) and q=(

𝑢
𝑣

) be 

points on different right-hand coordinate planes, and q=Ａp, f(p)=f(Ａ－1q)≡g(q) by 

definition hold. If g(q)=f(q)  =f(p), then we are not able to distinguish which world of the 



coordinate plane we are on. This shows how a law f(p)=f(q) is born which means the same 

function f on the different coordinate plane of p and q, and this mechanism is called the 

principle of relativity on physics, which is the same as the idea of Erlangen program on 

geometry. This mechanism must be subject to the extended Curie’s principle. The 

mathematical definition of the relativity principle is f(q)=  f(Ａp)=f(p) and detＡ >0. 

 

1.3 Theorems* 

▪Invariant line of 2x2 matrix  * These original theorems have proofs in the book [6] or paper [7]. 

When the matrix Ｂ=(
𝑎 𝑏
𝑐 𝑑

) has an eigen value λ=1, it has an invariant line f(p). 

f(Ｂp) ≡ f(p) = cx－(a－1)y. (1) 

▪Identity of quadratic invariant function of a 2x2 matrix  

Let Ａ=(
𝑎 𝑏
𝑐 𝑑

) be a matrix, p=(
𝑥
𝑦) be a point,  

and φ(p)=－cx2＋by2＋(a－d)xy be a quadratic function. 

There exists an identity φ(Ａp)≡detＡ･φ(p). 

If detＡ = 1, then φ(Ａp) =φ(p). 

In this case, φ(p) is called a quadratic invariant function of transformation Ａ． 

    

(2) 

▪Polar form of a 2x2 special linear matrix 

A special linear matrix Ｓ is decomposed using commutative coefficients k,h such as 

Ｓ= (
𝑎 𝑏
𝑐 𝑑

) = (
𝑚 + ℎ𝑏 𝑏

𝑘𝑏 𝑚 − ℎ𝑏
),  

where detＳ= m2－Δb2 = 1, Δ= h2＋k, m = (a＋d)/2, k = c/b, 2h = (a－d)/b, b≠0． 
(3) 

The matrix Ｓ has a normalized invariant function such as 

φ(Ｓp)=φ(p)=－kx2＋y2＋2hxy= r2, detＳ=1, p=(
𝑥
𝑦).  

 

(4) 

This satisfies the definition of the relativity principle. 

The matrix Ｓ and the invariant function φ(p) is classified into three types based on the 

sign of the discriminant Δ=h2＋k. If Δ< 0, then they are of an elliptic type. If Δ> 0, then 

they are of a hyperbolic type. If Δ= 0, then they are of a linear type. Thus we represent a 

2x2 special linear matrix Ｓ (detＳ= m2－Δb2 = 1) by declination θ and commutative 

coefficients k,h, using the relations of cos2 θ+sin2 θ =1 or cosh2 θ－sinh2 θ=1. 

For Δ< 0, Ｓ=Ｓ(θ,k,h) = (
cosθ +

ℎ

√−𝛥
sinθ

1

√−𝛥
sinθ

𝑘

√−𝛥
sinθ cosθ −

ℎ

√−𝛥
sinθ

), elliptic type. (5) 

For Δ> 0, Ｓ=Ｓ(θ,k,h) = (
coshθ +

ℎ

√𝛥
sinhθ

1

√𝛥
sinhθ

𝑘

√𝛥
sinhθ coshθ −

ℎ

√𝛥
sinhθ

), hyperbolic type. (6) 

For Δ= 0, Ｓ=Ｓ(b,h) = (
𝑚 + ℎ𝑏 𝑏

−ℎ²𝑏 𝑚 − ℎ𝑏
), where m =±1, linear type. (7) 

Any 2x2 non-diagonal regular matrix Ａ is represented by the polar form of  

Ａ= (detＡ)1/2Ｓ(θ,k,h)  or Ａ= (detＡ)1/2Ｓ(b,h)． (8) 

▪Extended velocity composition theorem 

 We have a velocity composition theorem from Lorentz transformation 



v13＝－v31＝(v12＋v23)／(1＋v12v23／c2). 

This is equivalently changed to: (c－v12)(c－v23)(c－v31)＝(c＋v12)(c＋v23)(c＋v31). 

This is extended 3 to n: (c－v12)(c－v23)・・・(c－vn1)＝(c＋v12)(c＋v23)・・・(c＋vn1). 

         

(9) 

 

2. Introduction 

 Think everything in a two-dimensional space-time model. 

(1) Put right-hand oblique coordinate systems on both face sides of a plane, and make 

them coincide with their origins. We define a 2x2 back coordinate transformation matrix 

Ｂ as an inside out transformation, then detＢ<0. Turn over the back coordinate 

transformation Ｂ to derive transformation Ａ which transforms between right- hand 

systems on the front surface. 

Ａ=ＭＢ=(detＡ)1/2Ｓ(θ,k,h), where detＡ>0, detＳ(θ,k,h)=1, Ｍ＝(
−1 0
0 1

). (8) 

The special linear transformationＳ(θ,k,h) is given by the polar form. The commutative 

coefficients k,h are the basis of a plane geometry, because they define the symmetry of a 

plane as shown later. 

 

(2) When detＡ=1 and transformations Ｓ have common commutative coefficients k,h, 

they form transformation group based on the invariant function of Equation (4) and they 

create the isometric transformation geometry with the metric of norm ‖p‖=r. 

 

(3) If the back coordinate transformation Ｂ≠Ｂ－1, then we are able to distinguish which 

side of a plane we are on. Therefore, the symmetry plane equation is 

Ｂ=Ｂ－1, where detＢ<0. (10) 

We obtain an oblique reflection transformation matrix Ｂ with two degrees of freedom: 

Ｂ= (
−𝑎 −𝑏
𝑐 𝑎

)=(
−𝑎 −𝑏
𝑘𝑏 𝑎

), detＢ=－1, k=c/b, eigen values λ= ±1. (11) 

(4) Turn over the oblique reflection transformation Ｂ to derive transformation Ｆ which 

transforms between right-hand coordinate systems on the front surface, 

Ｆ=ＭＢ=(
𝑎 𝑏

𝑘𝑏 𝑎
)=Ｓ(θ,k,0), where Ｍ=(

−1 0
0 1

), detＦ=1, k=c/b, h=0. (16) 

The matrix Ｆ=Ｓ(θ,k,0) is classified by k as follows. 

If k=－1, then Ｆ is referred to as rotation transformation. 

If k=0,    then Ｆ is referred to as Galilean transformation. 

If k>0,    then Ｆ is referred to as Lorentz transformation. 

Thus, we obtain these transformations from symmetry of a plane in spacetime. From 

Equation (4) and h=0, we have the quadratic invariant function which saticefies the 

relativity principle, 

φ(Ｆp)＝φ(p)＝－kx2+y2＝r2, detＦ＝1. (20) 

(5) Symmetry axioms: There are five kinds of symmetry of a plane in spacetime. 

a. linearity of a plane in spacetime (homogeneity of spacetime) 

 This symmetry includes translation of space and time, and reversal of space and time. 

b. commutativity of products of linear transformation  

c. front-back symmetry of a plane in spacetime  



 Next two terms are symmetries of a line on a plane. 

d. isotropy of space by two space lines which are equivalently inverted on a line 

e. unidirectional of time by two time lines having same direction [7] 

 

(6) The commutative coefficients k,h define the symmetry of a plane in spacetime.  

symt. h k plane transformation created geometry 

a - - affine(one sided) pln. Ａ general linear transf. affine geometry 

ab h* k* front-back asym. pln. Ｓ(θ,k,h)  special linear asymt. pln. geom. 

abc 0 k front-back symt. pln. Ｆ=Ｓ(θ,k,0)  iso-diagonal symt. pln. geom. 

abcd 0 -1 Euclidean plane Ｒ=Ｓ(θ,－1,0)  rotation Euclidean geometry 

abcde 0 0 Newtonian plane Ｇ=Ｓ(b,0)   Galilean Newtonian mechanc 

abcde 0 + Minkowski plane Ｌ=Ｓ(θ,k,0)   Lorentz relativity principle 

   * means that coefficients k,h have common values on a front-back asymmetry plane. 

 

(7) Two inertial coordinate systems moving at a constant speed v on a straight line 

correspond to the right-hand coordinate systems on the front and back Minkowski plane. 

This is shown in Figure 1 as a conventional form, and in Figure 2 as a symmetry form and 

both of them shows the same transformation Ｂ.  

 

(8) Minkowski plane means that this plane is ruled by Lorentz transformation and holds 

Minkowski plane geometry with theorems which are formally the same as Euclidean 

theorems [7]. Euclidean theorems are covariant with respect to rotational transformations 

because of Equation (20), similar should be the Minkowski plane geometry. 

 

(9) The relativity principle is not a postulate but a property of linear transformation 

reflecting the basic symmetries of space and time from which this principle is 

mathematically proved by eigenplane made of two eigenlines belonging to the oblique 

reflection transformation Ｂ. 

3. Proof of the Relativity Principle 

3.1 Symmetry plane  

 Put right-hand oblique coordinate systems on both face sides of a plane, and make them 

coincide with their origins. We define a 2x2 back coordinate transformation matrix Ｂ as 

an inside out transformation, then det Ｂ<0. Because it is not distinctive which side of a 

plane is the back or front, the symmetry plane equation is 

Ｂ＝Ｂ－1 ⇔ Ｂ2＝Ｅ, detＢ< 0． (10) 

We obtain an oblique reflection transformation matrix Ｂ with two degrees of freedom: 

Ｂ= ±(
−𝑎 −𝑏
𝑐 𝑎

)= ±(
−𝑎 −𝑏
𝑘𝑏 𝑎

), detＢ=－1, k=c/b, eigen values λ= ±1. 

  *The signs of variables a, b, and c can be set arbitrarily. Note that it is different from the setting in Eq. (1) 
(11) 

The matrix Ｂ has the following properties. 

▪An oblique reflection transformation Ｂ guarantees that the front and back coordinate 

systems are congruent, because their equations of coordinate axes have the same form.  

Front: y2-axis: x2=－ax1－by1=0,  x2-axis: y2=kbx1+ay1=0, 

Back:  y1-axis: x1=－ax2－by2=0,  x1-axis: y1=kbx2+ay2=0. 
(12) 



▪Since Ｂ has an eigen value of 1, then Ｂ has an invariant line f(p) from Equation (1) and 

putting a→－a,  

f(Ｂp) ≡ f(p) = cx＋(a＋1)y. (13) 

▪For λ=1 ⇔ a fixed-point equation Ｂp=p, this eigen line is called a fold line f: 

cx＋(a－1)y = 0. (14) 

▪For λ=－1 ⇔ an inversion equation Ｂp=－p, this eigen line is called an isotropic line g: 

cx＋(a＋1)y = 0. (15) 

This line g is isotropic regarding the origin and is parallel to an invariant line f(p) given as 

per Equation (13). 

▪When a point p is in an invariant line f(p)=s, and the point r is the intersection point of a 

fold line f and an invariant line f(p), then in the fold line f, Ｂr=r, and in the invariant line, 

f(Ｂp) =f(p)=f(r). Obtained by translating the vector (p－r) onto the isotropic line g, 

Ｂ(p－r) =－(p－r) ⇔ Ｂp－r =－p＋r ⇔Ｂp＋p = 2r.  

Since the fixed point r is the midpoint between the point p and Ｂp, the invariant line f(p) 

is isotropic around the fixed point r. For the fold line f and the isotropic line g, the inner 

product of both eigenvectors is  

−𝑐

𝑎−1
 

−𝑐

𝑎+1
 = 

𝑐2

𝑎2−1
 =

𝑐2

𝑏𝑐
 = 

𝑐

𝑏
 = k. (orthogonal)  

Eigenplane is composed of a fold line f and an isotropic line g, and they are generally 

oblique in figure but orthogonal in equation.   →See Figure 1. 

 The eigenplane belonging to the oblique reflection transformation Ｂ is called the oblique 

reflection plane. A point p is transformed to a point Ｂp in a same isotropic line by 

transformation Ｂ, and their middle point is in the fold line. 

f(Ｂp)=f(p)=f(r), Ｂp＋p = 2r. 

This oblique reflection plane is semi-isotropic centered a fold line. Also a point p on a 

front surface is transformed to a corresponding point q as q=Ｂp on a back surface. The 

oblique reflection plane is symmetric on the front and back surfaces. (See Figure 1. and 2.) 

▪Turn over the oblique reflection transformation Ｂ to derive transformation Ｆ which 

transforms between right-hand coordinate systems on the front surface such as 

Ｆ＝ＭＢ ＝ (
𝑎 𝑏

𝑘𝑏 𝑎
)=Ｓ(θ,k,0), where Ｍ＝(

−1 0
0 1

), detＦ＝1, k＝c/b, h=0, 

eigen values λ＝a±√𝑘b, eigen lines y＝±√𝑘x, k,h are commutative coefficients． 
(16) 

The transformation Ｆ is called a special iso-diagonal transformation. This transformation is 

x-reversal (xF=－x2, yF=y2) of the back coordinate system x2-y2 by the reflection 

transformation Ｍ to form right-hand system xF-yF on the front side.  

▪Figure 1. shows the case of Ｂ=
1

3
(

−5 4
−4 5

)=Ｂ－1, k=1 on a Minkowski plane and p=(
−3
−3

) for 

example. Coordinate(x,y) and  (xF,yF) are on the front side, coordinate (x2,y2) is on the 

back side. 

▪The back coordinate system(x2-y2) and the front coordinate system(x-y) are exactly 

equivalent as shown Equation (12). The fold line f is the midline between y-axis and y2- 

axis. 

 



p＝(
−3
−3

)  

 

q＝Ｂp 
Ｂp＝q＝(

1
−1

) 

Ｂp＝q＝(
1

−1
) 

Ｂq＝p＝(
−3
−3

)  

Ｂq＝p＝(
−3
−3

)  

p＝Ｂq 

p0 Invariant line  

f(p)＝y－x/2∥ g  

x 

y 

g : isotropic line 

 y=x/2  
r 

Ｂp0 

f(p)  

Fig. 1. Oblique reflection plane  

f(p) 

f : fold line  y=2x 

yF = y2   

x2 

xF＝－x2   

 

Red color shows back side. 

q＝Ｂp＝Ｂp 
r 

θ  

φ(p)=1 

r0 

▪Transformation Ｂ has duality of term 

a. and b. 

a. Figure inversion transformation:  

Ｂp＝q＝(
1

−1
)＝(

𝑥
𝑦) on the same surface. 

b. Back coordinate transformation:  

Ｂp＝q＝(
1

−1
)＝(

𝑥2

𝑦2
) from front to back 

surface. 
 

p＝Ｂq＝(
−3
−3

), p＝Ｂq＝(
−3
−3

),  

r＝(
−1
−2

)＝(p+q)／2  ＝(
−1
−2

)＝r 

 

 

 

 

 

Polar form of the special iso-diagonal transformation Ｆ 

▪From the polar form of the special linear matrix Ｓ, we obtain the polar form of the 

matrix Ｆ=Ｓ(θ,k,0), h = 0. The θ is the angle of intersection which is called a declination 

created by both y1-axis and y2-axis of the coordinate system. 

When k<0, Ｆ＝(
𝑎 𝑏

𝑘𝑏 𝑎
)＝(

cos𝜃 sin𝜃/√−𝑘

−√−𝑘sin𝜃 cos𝜃
), where θ is the elliptic angle. (17) 

This matrix Ｆ is called an elliptic transformation. In particular, when k=－1, the matrix Ｆ 

is called a rotational transformation, the matrix Ｂ is called a reflection transformation, and 

they are called orthogonal transformations. 

When k>0, Ｆ＝(
𝑎 𝑏

𝑘𝑏 𝑎
)＝(

cosh𝜃 sinh𝜃/√𝑘

√𝑘sinh𝜃 cosh𝜃
), where θ is the hyperbolic angle. (18) 

This matrix Ｆ is called the Lorentz transformation. 

When k＝0, Ｆ＝(
𝑎 𝑏

𝑘𝑏 𝑎
)＝ (

𝑎 𝑏
0 𝑎

), a＝±1. (19)     

This matrix Ｆ is called the Galilean transformation. 

▪From Equation (3), the special iso-diagonal transformation Ｆ is given by h=0 on Ｓ ⇔ 

Ｆ(θ,k)=Ｓ(θ,k,0), because the diagonal element ofＦ is a=d. From Equation (4), the 

transformation Ｆ has a quadratic invariant functionφ(p) which satisfies the definition of 

the relativity principle. 

φ(Ｆp)＝φ(p)＝－kx2+y2＝r2, detＦ=1, p=(
𝑥
𝑦). (20) 

Since the function φ(p) is also obtained from (
𝑢
𝑣

)＝Ｆ (
𝑥
𝑦), then φ(p) is the only invariant 

function of the transformation Ｆ. 

▪The transformation Ｆ(θ, k)=Ｓ(θ, k, 0) rule the symmetry plane transformation, create a 

commutative special iso-diagonal transformation continuous group based on the 

commutative coefficient k. Since Ｂ=ＭＦ and φ(Ｍp)＝φ(p)=－kx2+y2, the oblique 

reflection transformation Ｂ and the special iso-diagonal transformation Ｆ and Ｆ2 have 

the common invariant function φ(p) and the invariant r as shown below. 



φ(Ｂp)=φ(Ｍ(Ｆp))=φ(Ｆp)=φ(p)=－kx2+y2, where Ｍ=(
−1 0
0 1

), p＝(
𝑥
𝑦) 

φ(Ｆ2p)=φ(Ｆ(Ｆp))=φ(Ｆp)=φ(p)=－kx2+y2． 
 

When the commutative coefficient k is fixed to the plane, the matrices Ｆ and Ｂ have one 

degree of freedom of θ, and any product of these matrices Ｆ and Ｂ is closed on the orbit 

of a common invariant function φ(p). For example, 

φ(ＢＦ2…Ｂ－1Ｆ－1p)=φ(Ｆ2…Ｂ－1Ｆ－1p)=φ(Ｆ…Ｂ－1Ｆ－1p) 

=φ(Ｂ－1Ｆ－1p)=φ(ＢＦ－1p)=φ(Ｆ－1p)=φ(p)=－kx2+y2. 
(21) 

Therefore these transformations Ｂ andＦ create an isometric continuous transformation 

group based on the quadratic invariant function φ(p). 

▪The oblique reflection transformation (back coordinate transformation) Ｂ transforms 

the point p on the front surface to the corresponding point q on the back surface such as 

q1＝Ｂp1, q2＝Ｂp2． (22) 

On the front side, the figure transformation Ｘ with right-hand system transforms the 

point p1 to p2. Similarly, on the back side, the figure transformation Ｙ transforms the point 

q1 to q2 such as 

p2＝Ｘp1, detＸ＞0, q2＝Ｙq1, detＹ＞0． (23) 

From these four equations, we obtain 

q2＝Ｙq1＝ＹＢp１＝Ｂp2＝ＢＸp１． (24) 

Since the point p1 is arbitrary and Ｂ = Ｂ－1, we obtain the following. 

ＹＢ＝ＢＸ  ⇔Ｙ＝ＢＸＢ ⇔ ＢＹ＝ＸＢ, detＹ＝detＸ＞0, trＹ＝trＸ． (25) 

Thus, the matrices Ｘ and Ｙ are similar. 

Substituting Ｂ=Ｍ and Ｂ=ＭＦ intoＹＢ=ＢＸ on Equation (25) respectively, and therefore 

ＹＭ＝ＭＸ,   ＹＭＦ＝ＭＦＸ＝ＭＸＦ. (26) 

Comparing the second and third sides, ＦＸ＝ＸＦ and similarlyＦＹ＝ＹＦ. 

The right-hand coordinate transformation Ｆ and the figure transformation Ｘ,Ｙ are 

commutative and have the same commutative coefficient k. 

 When detＸ=1, the transformations Ｂ,Ｆ,Ｘ,Ｙ and any product of them have a common 

quadratic invariant function φ(p) on both sides of a plane such that 

φ(Ｂp)＝φ(Ｆp)＝φ(Ｘp)＝φ(Ｙp)＝φ(p)＝－kx2+y2＝r2 (27) 

as an orbit, and the geometry of the isometric transformation continuous group with the 

norm ‖p‖=r is created. 

‖Ｂp‖＝‖Ｆp‖＝‖Ｘp‖＝‖Ｙp‖＝‖p‖＝r． (28) 

 

3.2 What k gives? Three types of a symmetry plane 

 For one oblique reflection transformationＢ, there corresponds one special iso-diagonal 

transformation Ｆ and one oblique reflection plane. The declination θ is the angle of 

intersection between the right-hand coordinate y-axes represented by the transformation 

Ｆ. When the declination θ is a whole real number, the existing region of the fold line f 

and the isotropic line g those of which represent one oblique reflection plane depends on 



the positive or negative commutative coefficient k.  
 

(1) When k< 0, Ｆ is elliptic transformation. The polar form of the transformation Ｂ＝ＭＦ 

is from Equation (17), 

Ｂ＝(
−𝑎 −𝑏
𝑐 𝑎

) = (
−cos  𝜃 −sin  𝜃 /√−𝑘

−√−𝑘 sin 𝜃 cos 𝜃
), b＝

1

√−𝑘
sin θ，c＝kb. (29) 

The fold line f and the isotropic line g are obtained from Equations (14) and (15). 

the fold line f：y =
−𝑐

𝑎−1
𝑥 = √−𝑘

sin𝜃

cos𝜃−1
 𝑥 = √−𝑘cot

𝜃

2
･𝑥＝ux, 

the isotropic line g：𝑦 =
−𝑐

𝑎+1
𝑥 = √−𝑘

sin𝜃

cos𝜃+1
 𝑥 = √−𝑘tan

𝜃

2
･ 𝑥＝vx, 

the slopes of eigen lines f,g : －∞＜u＜∞, ∞＜v＜∞. 

(30) 

The half angle of declination θ determines the azimuth of the fold and isotropic line. 

When the declination of elliptic angle θ is a whole real number, the slopes u and v are also 

whole real numbers. Therefore, this plane is isotropic and thought to be space x space 

type because an oblique reflection plane is able to be transformed by Ｆ equally in all 

directions around the origin. This plane is called the extended Euclidean plane or elliptic 

type plane, and extended Euclidean plane geometry holds. In particular, when k=－1, the 

invariant function φ(p) =x2+y2 is a circle and this plane holds Euclidean geometry. 
 

(2) When k> 0, Ｆ is Lorentz transformation. The polar form of the transformation Ｂ =ＭＦ 

is from Equation (18), 

Ｂ＝(
−𝑎 −𝑏
𝑐 𝑎

) = (
−cosh 𝜃 −sinh 𝜃/√𝑘

√𝑘sinh 𝜃 cosh 𝜃
), b＝

1

√𝑘
sinh θ, c＝kb. (31) 

The fold line f and the isotropic line g are obtained from Equations (14) and (15). 

the fold line f：y=
−𝑐

𝑎−1
𝑥 = －√𝑘

sinh𝜃

cosh𝜃−1
 𝑥 = － √𝑘coth

𝜃

2
･𝑥＝ux, 

the isotropic line g：y＝
−𝑐

𝑎+1
𝑥 = －√𝑘

sinh𝜃

cosh𝜃+1
 𝑥 = －√𝑘tanh

𝜃

2
･ 𝑥 =vx. 

(32) 

the asymptotic line：y=±√𝑘x． (33) 

Both asymptotes divide the coordinate plane into four quadrants. The regions of existence 

of the eigen lines f and g are: The slope u of the fold line f is －∞＜u＜－√𝑘 and √𝑘＜u＜∞ in 

the upper and lower quadrants. The slope v of the isotropic line g is －√𝑘＜v＜√𝑘 in the left 

and right quadrants. When the declination of hyperbolic angle θ is a whole real number, 

the existence of the fold lines are unevenly distributed in the upper and lower quadrants 

partitioned by both asymptotes, and a point on the invariant function φ(p), namely 

upward hyperbola, is transitively transformed across the fold line f to a point on the same 

hyperbola in the same quadrant by the transformation Ｆ. Since the azimuths of both fold 

lines are aligned to upward, the fold line f is thought to be equivalent to the time line and 

the isotropic line g is thought to be equivalent to the space line. The plane of this space x 

time type is semi-isotropic. This plane is called Minkowski plane, and holds hyperbolic 

type plane geometry, i.e, Minkowski plane geometry.  
 

(3) When k=0, Ｆ is the Galilean transformation. From Equation (19), we obtain Ｂ＝ＭＦ＝

(
−𝑎 −𝑏
0 𝑎

), a＝±1, detＢ＝－1. 

the fold line f: x＝－by/2 (when a＝1), the isotropic line g : y＝0 (x-axis), 

the invariant line: f(Ｂp)＝f(p)＝y, 
(34) 



the invariant function:φ(Ｂp)＝φ(Ｆp)＝φ(p)＝y2. 

When y=t (time), time is an invariant quantity from the invariant function φ(Ｆp)＝φ(p)

＝t2, which is consistent with Newton's idea of absolute time, so this is called a Newtonian 

plane. This plane is semi-isotropic, and the spatial axis (y=0) of the oblique reflection 

planes is shared. 

 From the above, three types of the symmetry plane are extended Euclidean plane and 

Minkowski plane and Newtonian plane. The geometries of these planes satisfy the 

extended Curie’s principle, and also the relativity principle from Equation (20). Thus, the 

laws on the symmetry plane must be made from the invariant function φ(p) with the 

norm ‖p‖=r and they are obviously the special iso-diagonal transformation Ｆ invariant. 

            [End of proof] 

 

3.3 Symmetric spacetime structure of two inertial coordinate systems 

 Consider two inertial coordinate systems S1 and S2 moving away from each other on a 

line with constant velocity v. Both systems are equivalent. When each of the two inertial 

systems sees the other from a space x time right-hand system, the velocity and the 

positive orientation of the space axis are reversely related to each other, so the two 

systems correspond to the two sides of the Minkowski plane. The origins of both inertial 

coordinate systems are made to coincide. In the Figure 2., the coordinate axis x1-t1 of S1 is 

on the front side and x2-t2 of S2 is on the back side (red color). The back coordinate 

transformation is the oblique reflection transformation Ｂ. On the Minkowski plane, the 

special iso-diagonal transformation Ｆ is Lorentz transformation Ｌ(＝ＭＢ) which 

transforms from coordinate system S1 to Lorentz coordinate system SL such that 

(
𝑥2

𝑡2
)＝Ｂ (

𝑥1

𝑡1
) whereＢ＝(

−𝑎 −𝑏
𝑘𝑏 𝑎

), multiplying both sides by Ｍ＝(
−1  0
0 1

), 

Ｍ (
𝑥2

𝑡2
)＝ＭＢ(

𝑥1

𝑡1
), therefore (

−𝑥2

𝑡2
)＝ (

𝑥L

𝑡L
)＝Ｌ(

𝑥1

𝑡1
) where Ｌ＝ＭＢ＝ (

𝑎 𝑏
𝑘𝑏 𝑎

). 

The expansion formula for the Lorentz transformation is 

xL＝ax1+bt1, tL＝kbx1+at1, where k>0. 

(35) 

From the first equation, a is a unitless constant and b is a velocity constant. In the x1-t1 

coordinate system, the motion of S2 is expressed as x1＝vt1, while the expression for the tL 

axis is xL＝ax1+bt1＝0, so v＝x1/ t1＝－b/a. In the second equation, k is the inverse of the  

velocity squared, and by convention we use the velocity constant c as k＝1/c2. As detＬ＝1, 

so we obtain a＝(1－𝑣2/𝑐2)―1/2＝γ≧1. Thus, from the two inertial coordinate systems with   

velocity v, the Lorentz transformation Ｌ and its oblique reflection transformation Ｂ are 

specifically obtained on Equation (36).  

Figure 2. shows the same Ｂ= 
1

3
(

−5 4
−4 5

) as Figure 1. with k=c=1, v=4/5, γ= 5/3. 

Inertial frame 1: S1(x1,t1), Inertial frame 2: S2(x2,t2), Lorentz cord. sys.: SL(xL,tL) 

Rewrite Figure 1. with the fold line and isotropic line as cross centerlines to obtain Figure 2, but 

replace from y axis to t axis. Fold line f： t＝2x，isotropic line g：t＝x/2. Ｌ(
𝑣
1

)=(
0

1/𝛾
) , Ｌ(

𝛾𝑣
𝛾 )=(

0
1

), 

Ｌ(
1
0

)=γ(
1

−𝑣/𝑐2), Ｂ(
𝑣
1

)=(
0

1/𝛾
), f:Ｂ(

3
6

)=(
3
6

),  g:Ｂ(
6
3

)=(
−6
−3

),  x=ct : Ｂ(
1
1

)=(
−1/3
1/3

), Ｌ(
1
1

)=(
1/3
1/3

). 

Ｌ＝γ(
1 −𝑣

−𝑣/𝑐2 1
), Ｂ＝𝛾 (

−1 𝑣
−𝑣/𝑐2 1

)＝ＭＬ, detＢ＝－1, Ｌ(
0
1

)＝𝛾 (
−𝑣
1

), 

Ｌ－1＝γ(
1 𝑣

𝑣/𝑐2 1
) ,Ｌ−1 (

𝑥𝐿

𝑡𝐿
)＝(

𝑥1

𝑡1
), γ＝1／√1－𝑣2/𝑐2, c is a velocity constant. 

(36) 
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Any two inertial systems on a straight line are drawn as symmetrical as Figure 2. 

 

Maximum universal speed c 

 From Equation (9), we obtain the limit speed of inertial frames, where c is a velocity 

constant. 

(c－v12)(c－v23)・・・(c－vn1)＝(c＋v12)(c＋v23)・・・(c＋vn1) 

⇔ (c－v12) 2 (c－v23) 2・・・(c－vn1) 2＝(c2－v122)(c2－v232)・・・(c2－vn12)≧0, 

and n is integer ⇔ c2－vij2≧0 ⇔ (vij－c)( vij＋c)≦0, therefore －c≦ vij ≦c. 

where vij is the speed of inertial frame from i to j. 

  (9) 

     

(37) 

Any speed of inertial frame vij is not able to exceed the velocity constant c which means 

the maximum universal speed. From Maxwell’s law, the speed of light in the inertial 

reference frame is constant and the maximum speed in nature is the light speed in 

vacuum. On the basis (h=0, k=1/c2) of the Minkowski plane that guarantees the front-back 

symmetry in the empty spacetime, the maximum universal velocity constant c must be the 

speed of light in vacuum. This is equivalent to applying the principle of relativity to 

Maxwell’s law of the speed of light. 

4. Conclusion 

 It is noted that any function f(p) held on the front side holds the same as function f(p) 

on the back side such as  

Back coordinate transformation Ｂp＝q, figure inversion transformation Ｂq＝p, 

Ｂ＝Ｂ－1, f(p)＝f(Ｂ－1q)＝f(Ｂq)＝f(p). 

This symmetry is limited only between front and back surfaces as the transformation Ｂ 

plays the role of intermediary in the front-back symmetry.  

 On the other hand the invariant function φ(Ｆp)=φ(p) satisfies the relativity principle, 

because it keeps the same function of φ(p)=φ(q), q=Ｆp on the different coordinate 

systems of p=(
𝑥
𝑦) and q=(

𝑢
𝑣

) by the transformation Ｆ such that  

φ(Ｆp) =φ(p) =－kx2+y2=r2, detＦ=1.  (20) 

Also this transformation Ｆ satisfies the extended Curie’s principle as shown in section 



3.2. Thus, the only invariant function φ(p) of transformation Ｆ should be the core of the 

law of a symmetry plane. Therefore, the law of spacetime must be the variations of 

invariant function φ(p) with its invariant r such that  

φ(Ｆ(p1±p2))＝φ(p1±p2) or φ(Ｆ
𝑑

𝑑𝑟
p)＝φ(

𝑑

𝑑𝑟
p) or φ(Ｆ∫pdr)＝φ(∫pdr). (38) 

We are able to find these variations in the basic laws of physics on Minkowski plane or 

Newtonian plane and theorems of geometry on Euclidean plane or Minkowski plane 

based on Equations (27) and (28) [6]. For example, the inner product of the symmetry 

plane is derived from φ(Ｆp) =φ(p) =－kx2+y2=‖p‖2=(p, p). 

 (φ(Ｆp1)＋φ(Ｆp2)－φ(Ｆ(p1－p2)))/ 2＝(φ(p1)＋φ(p2) －φ(p1－p2))/ 2＝－kx1x2＋y1y2＝(p1,p2). 

 My paper establishes the followings. On the basis of the structure of a linear plane,  

from the symmetry of the space x space type plane (Euclidean plane), we have the 

reflection and the rotation transformation group which form Euclidean geometry.  

Also, from the symmetry of the space x absolute time type plane (Newtonian plane), we 

have the oblique reflection and the Galilean transformation group which form Newtonian 

mechanics.  

Finally, from the symmetry of the space x time type plane (Minkowski plane), we obtain 

the oblique reflection and the Lorentz transformation group which form the relativity 

principle. Therefrom, Minkowski plane geometry and the special theory of relativity are 

established [2][3]. 
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